Organometallic macrocyclic complexes: the synthesis, electrochemistry and single crystal X-ray structure of $[Fe(C_5H_5)(L)]^+$ (L = 1,4,7-trithiacyclononane)

Alexander J. Blake, Rhona D. Crofts, Gillian Reid and Martin Schröder *

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ (Scotland) (Received May 27th, 1988)

Abstract

Reaction of $[Fe(C_5H_5)I(CO)_2]$ with one molar equivalent of L (L = 1,4,7-trithiacyclononane) affords the complex cation $[Fe(C_5H_5)(L)]^+$ in high yield. Crystals of $[Fe(C_5H_5)(L)]BPh_4$ are monoclinic, space group $P2_1/c$, with a 15.0461(14), b 10.5866(12), c 19.8032(18) Å, β 100.205(9)°, V 3104.48 Å³, D_c 1.327 g cm⁻³, Z = 4. The single crystal X-ray structure of the complex shows octahedral Fe¹¹ with the carbocyclic and macrocyclic ligands bound facially to the metal centre, Fe–S(1) 2.2100(18), Fe–S(4) 2.2053(19), Fe–S(7) 2.2078(19), Fe–C 2.007(12)–2.112(12) Å. Two orientations of the C₅H₅ ring are observed. [Fe(C₅H₅)(L)]PF₆ shows a reversible one-electron Fe^{11/11} couple at $E_{1/2} = +0.44$ V vs. Fc/Fc⁺ in CH₃CN at platinum electrodes. Coulometry confirms that the oxidation is a one-electron process. The Fe¹¹¹ complex has been characterised by ESR and UV-visible spectroscopy.

Introduction

Coordination complexes of thioether macrocyclic ligands are the subject of particular current interest in view of their unusual stereochemical, electronic and redox properties [1–7]. We are particularly interested in developing the coordination chemistry of small ring tridentate macrocycles, such as 1,4,7-trithiacyclononane (L), 1,4,7-triazacyclononane and 1,4,7-trimethyl-1,4,7-triazacyclononane towards the synthesis of redox-active piano-stool complexes of the type $[M(L)(X)(Y)(Z)]^{x+}$ (X,Y,Z = neutral or anionic ligands) [1]. As a start to this study, we report herein the synthesis, structure and electrochemistry of the mixed-sandwich complex cation $[Fe(C_5H_5)(L)]^+$.

To date the only reported Fe complexes of 1,4,7-trithiacyclononane (L) are the bis-sandwich species $[Fe(L)_2]^{2+/3+}$ and $[Fe(L)(L^1)]^{2+/3+}$ ($L^1 = 1,4,7$ -trithiacyclononane-1-oxide) [8,9]. The low-spin complex $[Fe(L)_2]^{2+}$ shows a particularly anodic

Fe^{II/III} couple $(E_{1/2} + 0.98 \text{ V vs. Fc/Fc}^+)$ [8,9]; a similar stabilisation of the d^6 M^{II} centre has also been noted for the Ru^{II} analogue [Ru(L)₂]²⁺ $(E_{1/2} + 1.41 \text{ V vs. Fc/Fc}^+)$ [10,11]. We were particularly interested in assessing the stereochemical analogy between carbocyclic moieties such as aryl and cyclopentadienyl ligands and the nine-membered ring tridentate macrocyles; the ability of these ligand systems to bind facially to octahedral metal centres is well documented [1]. We have initiated this study by investigating mixed-sandwich complexes incorporating both carbocyclic and macrocyclic ligands.

Results and discussion

Reaction of $[Fe(C_5H_5)I(CO)_2]$ with one molar equivalent of 1,4,7-trithiacyclononane (L) in refluxing CH₃CN under N₂ affords the complex cation $[Fe(C_5H_5)(L)]^+$. The ¹H NMR spectrum of $[Fe(C_5H_5)(L)]BPh_4$ confirms a Cp:L:BPh₄⁻ ratio of 1:1:1, with the proton resonances of the methylene protons giving a complex ABCD pattern centred at 2.45 ppm (Fig. 1). The ¹³C NMR spectrum of the product showed only two resonances, at δ 35.61 and 74.34 ppm, assigned to the carbon centres of the coordinated thioether and carbocycle, respectively, indicating symmetrical coordination of these moieties to Fe^{II}. The fast atom bombardment mass spectrum of the complex shows a positive ion peak at $M^+ = 301$, with the correct isotopic distribution, corresponding to $[Fe(C_5H_5)(L)]^+$. No other peaks were observed at higher mass units. These data, together with elemental analyses, confirmed the formation of $[Fe(C_5H_5)(L)]^+$.

In order to monitor the stereochemical and conformational features of the complex we undertook a crystallographic study. Single crystals of $[Fe(C_5H_5)(L)]BPh_4$ were grown by diffusion of Et₂O vapour into a solution of the complex in CH₃CN. A view of the cation is shown in Fig. 2. The single crystal X-ray structure confirms

Fig. 1. ¹H NMR spectrum (80 MHz, CD_3NO_2 , 293 K) of $[Fe(C_5H_5)(L)]^+$.

Fig. 2. Single crystal X-ray structure of $[Fe(C_5H_5)(L)]BPh_4$ with numbering scheme adopted. Only one of the two C_5H_5 ring orientations is shown.

the facial coordination of the thioether and carbocyclic ligands to Fe^{II}, Fe-S(1) 2.2100(18), Fe-S(4) 2.2053(19), Fe-S(7) 2.2078(19) Å. Interestingly, the planar cyclopentadienyl moiety is disordered over two equally populated orientations: the two C₅ rings are essentially coplanar but are twisted by 6.18° with respect to each other. This is reminiscent of the disorder observed for the cyclopentadienyl rings in the high temperature solid-state structure of ferrocene [12]. An angle of ca. 3.15° is observed between the S(1)-S(4)-S(7) and C₅ planes in both orientations of the C₅H₅ ligand in the [Fe(C₅H₅)(L)]⁺ cation.

Cyclic voltammetry of $[Fe(C_5H_5)(L)]PF_6$ shows a reversible one-electron $Fe^{II/III}$ couple at $E_{1/2} + 0.44$ V. vs. Fc/Fc⁺, ΔE_p 63 mV. in CH₃CN at platinum electrodes (Fig. 3). Coulometry confirms that the reduction is a one-electron process. The value for this redox process is intermediate between that of $[Fe(L)_2]^{2+}$ [8,9] and ferrocene itself, and reflects the destabilisation of the Fe^{III} oxidation state by (L) relative to the cyclopentadienyl ligand.

Controlled potential electrolysis of $[Fe(C_5H_5)(L)]^+$ at +0.67 V in CH₃CN at a platinum gauze affords the Fe^{III} complex $[Fe(C_5H_5)(L)]^{2+}$, the ESR spectrum of which (measured at 77 K as a CH₃CN glass) shows an anisotropic signal with $g_1 = 2.177$, $g_2 = 2.023$, $g_3 = 1.972$. The UV-vis spectrum of $[Fe(C_5H_5)(L)]^+$ in CH₃CN shows absorption bands at λ_{max} 456 nm (ϵ_{max} 263 M^{-1} cm⁻¹), 371 (351), 266 (9,620) and 222 (18,120). Conversion of Fe^{III} into Fe^{III} can be seen to occur isosbestically (λ_{iso} 290 nm) when an optically transparent thin layer electrode system is used; this is accompanied by a decrease in intensity of the band at 266 nm to ϵ_{max} 7,930 M^{-1} cm⁻¹, and the growth of a shoulder at λ_{max} 312 nm. These results suggest that the absorption band at 266 nm is predominantly a metal-to-ligand charge transfer transition.

Fig. 3. Cyclic voltammogram of $[Fe(C_5H_5)(L)]PF_6$ in CH₃CN (0.1 $M^nBu_4NPF_6$) at platinum electrodes at 273 K.

Current work is aimed at the development of organometallic alkyl and hydrido complexes of Fe^{II} and Ru^{II} with L.

Experimental

Infrared spectra were recorded as Nujol mulls, KBr and CsI discs on a Perkin–Elmer 598 spectrometer over the range 200–4000 cm⁻¹. UV-visible spectra were measured in quartz cells using Perkin–Elmer Lambda 9 and Pye Unicam SP8-400 spectrophotometers. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. ESR spectra were recorded as solids or as frozen glasses down to 77 K using a Bruker ER200D X-band spectrometer. Electrochemical measurements were performed on a Bruker E310 Universal Modular Polarograph. All readings were taken with a three-electrode potentiostatic system in acetonitrile containing 0.1 M ⁿBu₄NPF₆ or ⁿBu₄BF₄ as supporting electrolyte. Cyclic voltammetric measurements were carried out with a double platinum electrode and a Ag/AgCl reference electrode. All potentials are quoted versus ferrocene/ferrocinium, Fc/Fc⁺. Electron impact mass spectra were recorded on a Kratos MS 902, and FAB spectra on a Kratos MS 50TC spectrometer.

Table 1

Bond lengths (Å) with	standard	deviations
----------------	---------	----------	------------

Table 2

Angles (degrees) with standard deviations

$\overline{S(1) - Fc(1) - S(4)}$	90.47(7)	Fe(1)-S(7)-C(6)	106.32(23)	
S(1) - Fe(1) - S(7)	90.50(7)	Fe(1)-S(7)-C(8)	103.54(22)	
S(4) - Fe(1) - S(7)	90.84(7)	C(6) - S(7) - C(8)	100.9(3)	
Fe(1)-S(1)-C(2)	103.69(21)	S(1)-C(2)-C(3)	112.5(5)	
Fe(1)-S(1)-C(9)	105.97(21)	S(4)-C(3)-C(2)	111.1(5)	
C(2)-S(1)-C(9)	99.5(3)	S(4)-C(5)-C(6)	112.9(5)	
Fe(1) - S(4) - C(3)	106.06(22)	S(7) - C(6) - C(5)	110.1(5)	
Fe(1)-S(4)-C(5)	102.91(24)	S(7)-C(8)-C(9)	112.5(5)	
C(3)-S(4)-C(5)	101.1(3)	S(1)-C(9)-C(8)	111.0(4)	

Synthesis of $[Fe(C_5H_5)(L)]PF_6$

Reaction of $[Fe(C_5H_5)I(CO)_2]$ (0.067 g, 2.22×10^{-4} mol) with one molar equivalent of L (0.04 g, 2.22×10^{-4} mol) in refluxing CH₃CN under N₂ for 5 h afforded a deep red solution. The solvent was removed in vacuo and the solid product, $[Fe(C_5H_5)(L)]I$, redissolved in MeOH. Addition of excess of NH₄PF₆ afforded a red precipitate, which was collected and recrystallised from CH₃NO₂ to give $[Fe(C_5H_5)(L)]PF_6$ (0.065 g, 66%).

Elemental analysis: found: C, 29.7; H, 3.9; S, 22.1. $[Fe(C_5H_5)(L)]PF_6$ calcd.: C, 29.6; H, 3.8; S, 21.6%. Infrared spectrum (KBr disc): 3120, 1415, 1000, 440 cm⁻¹ (C₅H₅); 2960, 2940, 1445, 1415, 1290, 1170, 1120, 955, 910, 670, 410cm⁻¹ (L); 840, 555cm⁻¹ (PF₆⁻). UV-vis spectrum (MeCN): λ_{max} 456 nm (ϵ_{max} 263 M^{-1} cm⁻¹), 371 (351), 266 (9,620), 222 (18,120). ¹³C NMR spectrum (CD₃CN, 293 K, 50.32 MHz): δ 74.34 (CH, C₅H₅), 35.61 ppm (CH₂, L). Elemental analysis: found: C, 30.2; H, 4.1. [Fe(C₅H₅)(L)]I calcd.: C, 30.9; H, 4.0%.

Synthesis of $[Fe(C_5H_5)(L)]BPh_4$

Replacement of NH₄PF₆ by NaBPh₄ in the above preparation afforded the corresponding BPh₄⁻ salt. FAB mass spectrum: found $M^+ = 301$; calculated for [Fe(C₅H₅)(L)]⁺ $M^+ = 301$ (with correct isotropic distribution). ¹H NMR spectrum (CD₃CN, 298 K, 200 MHz): δ 6.8–7.4 (BPh₄, 20H, m), 4.8 (C₅H₅, 5H, s), 2.45ppm (CH₂, 12H, m).

Table 3

Torsion angles (degrees) of the trithia ligand with standard deviations

$\overline{C(9)-S(1)-C(2)-C(3)}$	-69.8(5)	
C(3)-S(4)-C(5)-C(6)	-68.2(5)	
C(8)-S(7)-C(6)-C(5)	134.5(5)	
C(2)-S(1)-C(9)-C(8)	135.6(5)	
C(6)-S(7)-C(8)-C(9)	- 70.2(5)	
S(1)-C(2)-C(3)-S(4)	- 44.6(6)	
S(4)-C(5)-C(6)-S(7)	-45.0(6)	
S(7)-C(8)-C(9)-S(1)	- 45.0(6)	
C(5)-S(4)-C(3)-C(2)	135.2(5)	

X-Ray structure determination of $[Fe(C_5H_5)(L)]BPh_4$

A red crystal $(0.46 \times 0.46 \times 0.35 \text{ mm})$ suitable for X-ray analysis was obtained by isothermal distillation of Et₂O into a solution of the complex in CH₃CN.

Crystal data. $C_{35}H_{37}BFeS_3$, monoclinic, M = 620.51, space group $P2_1/c$, with a 15.0461(14), b 10.5866(12), c 19.8032(18) Å, β 100.205(9)°, V 3104.48 Å³ (from 2θ

Table 4

The formation of an and the standard a seriation	Fractional	coordinates	of	atoms	with	standard	deviation
--	------------	-------------	----	-------	------	----------	-----------

	x	у	Z	U _{eq}
Fe(1)	0.66556(5)	0.25728(8)	0.06238(4)	0.0387(5)
S(1)	0.80945(10)	0.27927(15)	0.05457(8)	0.0398(9)
S(4)	0.69806(11)	0.28926(17)	0.17408(8)	0.0477(10)
S(7)	0.68452(11)	0.05177(16)	0.07753(9)	0.0458(10)
C(2)	0.8588(4)	0.3555(6)	0.1352(3)	0.048(4)
C(3)	0.8213(4)	0.3050(7)	0.1951(3)	0.053(4)
C(5)	0.6819(5)	0.1327(7)	0.2094(4)	0.062(5)
C(6)	0.7183(5)	0.0272(6)	0.1706(3)	0.055(5)
C(8)	0.7910(4)	0.0207(6)	0.0484(4)	0.052(5)
C(9)	0.8598(4)	0.1222(6)	0.0698(3)	0.044(4)
C(1R)	0.5294(8)	0.2304(11)	0.0182(7)	0.049(5)
C(2R)	0.5800(8)	0.2269(11)	-0.0329(7)	0.042(5)
C(3R)	0.6247(8)	0.3399(11)	-0.0327(7)	0.045(5)
C(4R)	0.6008(8)	0.4139(11)	0.0180(7)	0.065(5)
C(5R)	0.5453(8)	0.3442(11)	0.0517(7)	0.075(9)
C(6R)	0.6311(6)	0.4068(12)	-0.0051(6)	0.049(4)
C(7R)	0.6017(6)	0.2948(12)	-0.0359(6)	0.056(4)
C(8R)	0.5431(6)	0.2406(12)	0.0014(6)	0.069(5)
C(9R)	0.5335(6)	0.3219(12)	0.0538(6)	0.047(6)
C(10R)	0.5892(6)	0.4235(12)	0.0504(5)	0.049(4)
B(1)	0.7788(4)	0.7415(7)	0.3565(3)	0.032(4)
C(1')	0.78237(25)	0.7785(4)	0.43962(14)	• 0.037(4)
C(2')	0.70570(25)	0.7574(4)	0.46866(14)	0.043(4)
C(3')	0.70930(25)	0.7755(4)	0.53888(14)	0.050(4)
C(4')	0.78959(25)	0.8145(4)	0.58006(14)	0.059(5)
C(5')	0.86626(25)	0.8356(4)	0.55102(14)	0.054(5)
C(6')	0.86265(25)	0.8175(4)	0.48081(14)	0.046(4)
C(7')	0.80405(25)	0.5869(3)	0.36145(19)	0.035(4)
C(8')	0.73732(25)	0.4940(3)	0.34974(19)	0.043(4)
C(9')	0.76012(25)	0.3675(3)	0.36262(19)	0.059(5)
C(10')	0.84964(25)	0.3338(3)	0.38723(19)	0.066(5)
C(11')	0.91637(25)	0.4267(3)	0.39894(19)	0.060(5)
C(12')	0.89357(25)	0.5532(3)	0.38606(19)	0.044(4)
C(13')	0.85276(23)	0.8251(3)	0.32009(17)	0.032(4)
C(14')	0.88915(23)	0.7713(3)	0.26673(17)	0.036(4)
C(15')	0.94320(23)	0.8436(3)	0.23119(17)	0.046(4)
C(16')	0.96086(23)	0.9698(3)	0.24899(17)	0.044(4)
C(17')	0.92447(23)	1.0236(3)	0.30235(17)	0.044(4)
C(18')	0.87042(23)	0.9513(3)	0.33789(17)	0.041(4)
C(19')	0.67958(21)	0.7741(4)	0.30644(17)	0.037(4)
C(20')	0.65231(21)	0.7067(4)	0.24580(17)	0.047(4)
C(21')	0.57296(21)	0.7399(4)	0.20155(17)	0.060(5)
C(22')	0.52089(21)	0.8406(4)	0.21795(17)	0.067(6)
C(23')	0.54817(21)	0.9081(4)	0.27859(17)	0.061(5)
C(24')	0.62752(21)	0.8748(4)	0.32283(17)	0.048(4)

values of 36 reflections measured at $\pm \omega$ (2 θ 24-26°, $\bar{\lambda} = 0.71073$ Å)], D_c 1.327 g cm⁻³, Z = 4; F(000) = 1304, μ 6.70 cm⁻¹.

Data collection and processing. Stoe-Siemens AED2 four-circle diffractometer, Mo- K_{α} X-radiation, $\omega - 2\theta$ scans with ω scan width $(0.80 + 0.347 \tan \theta)^{\circ}$, 4138 reflections measured to 2θ 45°, giving 2519 with $F \ge 6\sigma(F)$. No significant crystal decay, no absorption correction.

Structure analysis and refinement. The Fe and S atoms were located by direct methods [13] followed by iterative least-squares refinement and difference Fourier synthesis [14] to locate all other non-H atoms. Anisotropic thermal parameters were refined for all Fe, S, B and C atoms except those of the disordered cyclopentadienyl ring: two orientations of this ring were modelled successfully by refinement as planar rigid groups with C-C distances of 1.373 Å and C-C-C angles of 108° . H atoms on the macrocycle, on the BPh_4^- counter-ion and on both orientations of the cyclopentadienyl ring were included in fixed, calculated positions [14]. The weighting scheme $w^{-1} = \sigma^2(F) + 0.00058F^2$ gave satisfactory analyses. At convergence, $R, R_{w} = 0.0484$ and 0.0598 respectively for 291 parameters, S = 1.166. The maximum and minimum residues in the final ΔF syntheses were 0.39 and -0.38 eÅ⁻³ respectively. Illustrations were prepared using ORTEP [15], molecular geometry calculations utilised CALC [16], and scattering factor data were taken from ref. 17. Bond lengths, angles, torsion angles and fractional coordinates are given in Tables 1-4. Lists of thermal parameters, hydrogen atom coordinates, and observed and calculated structure factors are available from the author.

Acknowledgements

We thank SERC for support.

References

- 1 M. Schröder, Pure Appl. Chem., 60 (1988) 517 and ref. therein.
- 2 H.-J. Küppers, A. Neves, C. Pomp, D. Ventur, K. Wieghardt, B. Nuber and J. Weiss, Inorg. Chem., 25 (1986) 2400.
- 3 M.T. Ashby and D.L. Lichtenberger, Inorg. Chem., 24 (1985) 636.
- 4 R.S. Glass, W.N. Setzer, C.A. Ogle and G.S. Wilson, Inorg. Chem., 22 (1983) 266; G.S. Wilson, D.D. Swanson and R.S. Glass, ibid., 25 (1986) 3827.
- 5 E.W. Abel, P.D. Beer, I. Moss, K.G. Orrell, V. Šik, P.A. Bates and M.B. Hursthouse, J. Chem. Soc., Chem. Commun., (1987) 978; E.W. Abel, P.D. Beer, I. Moss, K.G. Orrell, V. Šik, P.A. Bates and M.B. Hursthouse, J. Organomet. Chem., 341 (1988) 559.
- 6 D. Sellmann and P. Frank, Angew. Chem., 98 (1986) 1115; Angew. Chem. Int. Ed. Engl., 25 (1986) 1107.
- 7 J.R. Hartman and S.R. Cooper, J. Am. Chem. Soc., 108 (1986) 1202; J.R. Hartman, and S.R. Cooper, ibid., 108 (1986) 1208.
- 8 K. Wieghardt, H.-J. Küppers and J. Weiss, Inorg. Chem., 24 (1985) 3067.
- 9 H.-J. Küppers, K. Wieghardt, B. Nuber, J. Weiss, E. Bill and A.X. Trautwein, Inorg. Chem., 26 (1987) 3762.
- 10 M.N. Bell, A.J. Blake, H.-J. Küppers, M. Schröder and K. Wieghardt, Angew. Chem., 99 (1987) 253; Angew. Chem. Int. Ed. Engl., 26 (1987) 250.
- 11 S.C. Rawle, T.J. Sewell and S.R. Cooper, J. Chem. Soc., Chem. Commun., (1987) 308; S.C. Rawle, T.J. Sewell and S.R. Cooper, Inorg. Chem., 26 (1987) 3769.
- 12 P. Seiler and J. Dunitz, Acta Crystallogr., B, 35 (1979) 1068. For discussion see: E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock (Eds.), Structural Methods in Inorganic Chemistry, p. 375-378, Blackwell Scientific Publications, Oxford, 1987.

- 13 SHELX86, Program for Crystal Structure Solution, G.M. Sheldrick, University of Göttingen, 1986.
- 14 SHELX76, Program for Crystal Structure Determination, G.M. Sheldrick, University of Cambridge, 1976.
- 15 ORTEPII, interactive version. P.D. Mallinson and K.W. Muir, J. Appl. Cryst., 18 (1985) 51.
- 16 CALC, Fortran77 version. R.O. Gould and P. Taylor, University of Edinburgh, 1985.
- 17 D.T. Cromer and J.L. Mann, Acta Crystallogr., A, 24 (1968) 321.